Team:Shenzhen SFLS/Project

From 2013hs.igem.org

(Difference between revisions)
(Team)
(Project)
Line 66: Line 66:
===Project===
===Project===
-
Student at SFLS want to use an enzyme known as “polyphosphate kinase”(PPK)to governance the eutrophication of water bodies. We know that Inorganic phosphate (Pi) is recognized as one of the major nutrients contributing to the outbreak of red tide.We have found that PPK is known to digest Inorganic phosphate (Pi). There is a small amount of it in e.coli and we want to copy the gene of PPK in the e.coli to make it more efficient,so the role of PPK will be more obvious Then we will use the GFP to express the result of the digest of PPK.We want to make two device in a gene circut to deal with this problem.
+
Too much phosphorus in the body can be just as harmful as having too little. Likewise, too much phosphorus in lakes and streams can have negative side effects on the surrounding environment. The process we have created of degrading phosphates in an aqueous solution uses two engineered devices on the same construct.  
 +
The first device contains a phosphate sensitive promoter (name of promoter), a gfp gene (name of gene), and a Lac gene (name of gene).
-
 
+
The second device contains a Lac sensitive promoter, an rfp gene, and a gene that codes for a polyphosphatase. In the presence of high concentrations of phosphate, the Lac sensitive promoter is turned on and the production of Lac is allowed. After a certain threshold of Lac is made, the Lac sensitive promoter is turned on and the production of polyphosphatase is allowed. The polyphosphatase then degrades phosphates present in the solution. The production of GFP is used as a visual marker for the production of Lac and the production of RFP is used as a visual marker for the production of polyphosphatase. In a timed experiment, GFP should be seen first. After enough Lac is made RFP should then be seen. Upon the degradation of phosphates, the termination of both of these proteins should follow.
-
Device 1: We use a limitable promoter which would be limited by high concentrations of Pi, then the GFP in this device won't light and a protein we add in the device won't breed .
+
-
 
+
-
 
+
-
 
+
-
Device 2: If the protein didn't breed, the promoter in Device 2 will be induced and the PPK gene will work, it will digest Pi. When the concentration of phosphate become low, devive 2 will stop to digest Pi and the promoter in device 1 will be induced, then the GFP in device 1 will light. That means the work has finished.
+
-
 
+
-
 
+
-
( We will put on our picture of gene circuts in few days)
+
===Notebook===
===Notebook===

Revision as of 09:59, 1 April 2013


This is a template page. READ THESE INSTRUCTIONS.
You are provided with this team page template with which to start the iGEM season. You may choose to personalize it to fit your team but keep the same "look." Or you may choose to take your team wiki to a different level and design your own wiki. You can find some examples HERE.
You MUST have the following information on your wiki:
  • a team description
  • project description
  • safety information (did your team take a safety training course? were you supervised in the lab?)
  • team attribution (who did what part of your project?)
You may also wish to add other page such as:
  • lab notebook
  • sponsor information
  • other information
REMEMBER, keep all of your pages within your teams namespace.
Example: 2013hs.igem.org/Team:Deerfield_MA/Our_Pets



You can write a background of your team here. Give us a background of your team, the members, etc. Or tell us more about something of your choosing.
Deerfield MA logo.png

Tell us more about your project. Give us background. Use this as the abstract of your project. Be descriptive but concise (1-2 paragraphs)

Your team picture
Team Shenzhen_SFLS


Official Team Profile

Contents

Team

Peilin Li: the instructor of SFLS students.

Kang Kang: the advisor of SFLS students. In BGI, K2 is veeeeery famous for lurking on BBS and sarcasm! As a former champion in a national robot contest, a hacker, a web engineer, a designer, a magazine editor, a citizen reporter, a filmmaker and a drama actor, he has always too many wonderings, including how life works on its core database - genome. Cracking and hacking the code of life, making actors in cell perform on his scripts, has become the primary task of this young scientist.

Hekang Jia: the captain of SFLS students, set his sights on get the only grand prize. The boy who set up the team by himself,has strong desire to make everthing best. He was often very serious in team's seminar and made others under pressure. He is the also the leader of team's students working on theoretical derivation.

Biwei Zheng: the associate captain of SFLS students.The boy has the sense of responsibility for his team and the program. He has a great enthusiasm in Molecular biology and he really enjoy learning it.Besides these,the boy has many hobits and very popular among his friends.

Ruping Liu: Conscientious and careful to anything. She’s interested in biology, not only because of its diversity but also its mystery. Her dream is to do something which is useful to the world in the future. The girl is working on reading paper and do some experiments in SFLS iGEM team.

Kang Li: Eric Lee is a senior one student in SFLS and is responsible for the team’s theoretical group. He has a strong desire in biology and he is very good at communicating with people. So he is also responsible for communicating with the committee. He is a good speaker too. Eric is looking forward to helping the team more.

Ziying Tan: Tina is studying in SFLS Class 7 Grade 10. Aside from spending time before the computer or in the lab, she enjoys rubber sculpture and reading.She is now one of the leaders of vacation club. She couldn`t think of a better way to enjoy her summer in school than joining Shenzhen SFLS IGEM team!

Project

Too much phosphorus in the body can be just as harmful as having too little. Likewise, too much phosphorus in lakes and streams can have negative side effects on the surrounding environment. The process we have created of degrading phosphates in an aqueous solution uses two engineered devices on the same construct.

The first device contains a phosphate sensitive promoter (name of promoter), a gfp gene (name of gene), and a Lac gene (name of gene).

The second device contains a Lac sensitive promoter, an rfp gene, and a gene that codes for a polyphosphatase. In the presence of high concentrations of phosphate, the Lac sensitive promoter is turned on and the production of Lac is allowed. After a certain threshold of Lac is made, the Lac sensitive promoter is turned on and the production of polyphosphatase is allowed. The polyphosphatase then degrades phosphates present in the solution. The production of GFP is used as a visual marker for the production of Lac and the production of RFP is used as a visual marker for the production of polyphosphatase. In a timed experiment, GFP should be seen first. After enough Lac is made RFP should then be seen. Upon the degradation of phosphates, the termination of both of these proteins should follow.

Notebook

Show us how you spent your days.


Results/Conclusions

What did you achieve over the course of your semester?


Safety

What safety precautions did your team take? Did you take a safety training course? Were you supervised at all times in the lab?


Attributions

Who worked on what?


Human Practices

What impact does/will your project have on the public?


Fun!

What was your favorite team snack?? Have a picture of your team mascot?


<forum_subtle />