Team:TPHS SanDiego/Project
From 2013hs.igem.org
Line 50: | Line 50: | ||
<p style="font-family:Georgia;color:black;font-size:16px;"> | <p style="font-family:Georgia;color:black;font-size:16px;"> | ||
+ | |||
+ | <html> | ||
+ | <iframe src="https://skydrive.live.com/embed?cid=59CD1548544698F0&resid=59CD1548544698F0%21130&authkey=AGRBBScY59tZ4MA&em=2" width="402" height="327" frameborder="0" scrolling="no"></iframe> | ||
Our project focuses on promoter engineering. Our goal is to characterize a set of promoters (of our design) by moving the repressor and/or activator binding sites with respect to the -10 and -35 regions of the promoter. Ideally, we would like to show that by moving an activator binding site it can become a repressor and that by moving a repressor binding site it may become either irrelevant to transcription rate or even boost it. We also want to see if there is a steep decline in repressor/activator function as the binding site move along the promoter or if it is a gradual/linear change. We believe this project could have application to genetic circuits by allowing a single protein to either activate or repress a promoter depending on where the binding sites are placed on the promoter. | Our project focuses on promoter engineering. Our goal is to characterize a set of promoters (of our design) by moving the repressor and/or activator binding sites with respect to the -10 and -35 regions of the promoter. Ideally, we would like to show that by moving an activator binding site it can become a repressor and that by moving a repressor binding site it may become either irrelevant to transcription rate or even boost it. We also want to see if there is a steep decline in repressor/activator function as the binding site move along the promoter or if it is a gradual/linear change. We believe this project could have application to genetic circuits by allowing a single protein to either activate or repress a promoter depending on where the binding sites are placed on the promoter. | ||
</html> | </html> |
Revision as of 23:01, 10 May 2013
Our project focuses on promoter engineering. Our goal is to characterize a set of promoters (of our design) by moving the repressor and/or activator binding sites with respect to the -10 and -35 regions of the promoter. Ideally, we would like to show that by moving an activator binding site it can become a repressor and that by moving a repressor binding site it may become either irrelevant to transcription rate or even boost it. We also want to see if there is a steep decline in repressor/activator function as the binding site move along the promoter or if it is a gradual/linear change. We believe this project could have application to genetic circuits by allowing a single protein to either activate or repress a promoter depending on where the binding sites are placed on the promoter.