Team:St Pauls London/Human Practices
From 2013hs.igem.org
|
|
|
|
Human Practices
The school team is aiming to create a semi-quantitative detector for lactose, a sugar molecule which causes intolerance in 9% Caucasians, and between 70-90% in Asians, South Americans and Africans. It is most commonly found in milk and dairy products and intolerance has been linked to recent over consumption of milk and dairy, particularly in Europe and North America.
Individuals who are lactose intolerant have an insufficient lactase concentrations in their digestive tract; so they are unable to hydrolyse lactose into galactose and glucose. As a result these disaccharide lactose molecules pass straight through the small intestine and into the colon. Bacteria in the colon can hydrolyse and then metabolise lactose and their anaerobic respiration of lactose produces CO2 and CH2 in the colon. This leads to the bloated feeling and symptoms associated with intolerance. Unabsorbed glucose and galactose monosaccharides in the colon also reduce water potential in the colon leading to an influx of water and hence diarrhea. You can read more about lactose intolerance from the [http://www.milk.co.uk/page.aspx?intPageID=138| UK Dairy Council].
We hope to go some way to fix this problem but providing the mechanism for a lactose detector. This should enable lactose intolerants to better decide what food produce to eat and help them avoid painful symptoms of intolerance. Furthermore the semi-quantitative nature of the project should enable people with a range of different tolerance levels to be catered for by the sensor; so individuals with higher lactose tolerance can eat more lactose rich food, but individuals with low tolerance can avoid it altogether. Our hope is that this detector may be used in laboratory setting by food manufacturers to test and correctly label produce for consumers - this will help to properly inform the public and allow them to make better health choices.