Team:CIDEB-UANL Mexico/mathmodel
From 2013hs.igem.org
Mathematical modeling
System topology
Our system is composed by two parts, the first consists of the transcription factor cI (c0051) under the regulation of a promoter with a riboswitch (J23100 and k110517) that can be activated or repressed depending on the temperature; we call this our thermosensor. The second part consist of two genes -the insecticide protein VIP and the green fluorescent protein, GFP- that are under the regulation of cI.
The thermosensor is repressed when the temperature is below 32 °C; when the temperatures reaches a range between 32 and 37 °C, the thermosensor is activated.
cI (c0051) is a gene that constitutively represses the promoter r0051. Once our promoter is activated starts the production of Vip3Ac3 and GFP. This is means that a range below 32 °C to 37 °C ables the production of the Vip and GFP.
Deterministic model
Our deterministic model represents the change in time of the concentrations of mRNAs and their corresponding proteins. It assumes that the variables behave continuously and obey kinetic rules that can be represented by constants. We are aware that, in practice, the components and variables in the model may not fall under the assumptions of a deterministic model and that there is always the chance that noise effects are being grossly underestimated; however, we propose this model as a general framework for thermoregulator modeling, upon which further work can be done.
Equations
\begin{equation} \large \frac{d[mC]}{dt} = \alpha_{1} - \mu_{1}[mC] \end{equation}
Describe transcription of cI (C0051) mRNA over the change in time; that it is equal to the transcription rate of cI less of the degradation rate of cI (mRNA).
\begin{equation} \large \frac{d[C]}{dt} = \alpha_{2} \cdot f_{RBS} \cdot [mC] - \mu_{2}[C] \end{equation}
Describe the translation of cI (C0051) over the change in time, that it is equal to the translation rate of cI by the function RBS of ribosome (it is expressed in equation 5) multiplied by the transcription of cI (equation 1) less of degradation rate of cI(protein).
\begin{equation} \large [mC]_{max} = \frac{\alpha _{1}}{\mu _{1}} \end{equation}
It describes the transcription of cI (C0051) when the time is 0 because we supposed at that specific time the transcription will be in the maximum production. The it is solved the first equation and is the transcription rate of cI divided by the degradation rate of cI.
\begin{equation} \large [C]_{max} = \frac{\alpha _{1} \cdot \alpha _{T}} {\mu _{1} \cdot \mu _{T}} \end{equation}
It describes the translation of cI (C0051) when the time is 0 because we supposed at that specific time the translation will be in the maximum production, such as the third equation. It is solved and the equation is equal to the transcription of cI by the translation of cI is divided by the degradation rate of cI (mRNA)by the degradation rate(protein)
\begin{equation} \large f_{RBS} = \left\{ \begin{array}{rcl} 0 & \mbox{if} & t \geq ON \\ 1 & \mbox{if} & t < ON \end{array} \right. \end{equation}
The function of RBS of ribosome it says that at the range of temperature between 32 oC and 37 oC, the production of Vip3Ca3 will be null such as GFP and that´s why we relation with the 0 and the term of grater or equal than it´s ON (cI), and the term 1 express that at below temperature (32oC) it will start the production of Vip3Ca3 and GFP (ON) and the cI off.
\begin{equation} \large \frac{d[mV]}{dt} = \alpha_{3} \cdot \frac{K_{D}^h}{K_{D}^h + [C]^h} - \mu_{1}[mV] \end{equation}
It describes the transcription of Vip3Ca3 mRNA over the change in time; that it is equal to the transcription rate of Vip, regulated depending on the production of cI, less the degradation rate of Vip (mRNA)
\begin{equation} \large \frac{d[V]}{dt} = \alpha_{4} \cdot [mV] - \mu_{4}[V] \end{equation}
It describes the translation of Vip3Ca3 over the change in time, that it is equal to the translation rate of Vip multiplied by the transcription of Vip (equation 7) less of degradation rate of Vip (protein).
\begin{equation} \large [mV]_{max} = \frac{\alpha _{3}}{\mu _{3}} \end{equation}
It describes the transcription of Vip3Ca3 when the time is 0 because we supposed at that specific time the transcription will be in the maximum production. Then it is solved the octave equation and is the transcription rate of Vip3Ca3 divided by the degradation rate of VIP.
\begin{equation} \large [V]_{max} = \frac{\alpha _{3} \cdot \alpha _{4}} {\mu _{3} \cdot \mu _{4}} \end{equation}
It describes the translation of Vip3Ca3 when the time is 0 because we supposed at that specific time the translation will be in the maximum production, such as the ninth equation. It is solved and the equation is equal to the transcription of Vip by the translation of Vip is divided by the degradation rate of Vip mRNA by the degradation rate of Vip protein
\begin{equation} \large \frac{d[mG]}{dt} = \alpha_{5} \cdot \frac{K_{D}^h}{K_{D}^h + [C]^h} - \mu_{5}[mG] \end{equation}
It describes the transcription of GFP mRNA over the change in time; that it is equal to the transcription rate of GFP, regulated depending on the production of cI, less the degradation rate of GFP (mRNA)
\begin{equation} \large \frac{d[G]}{dt} = \alpha_{6} \cdot [mG] - \mu_{6}[G] \end{equation}
It describes the translation of GFP over the change in time, that it is equal to the translation rate of GFP multiplied by the transcription of GFP (equation 11) less of degradation rate of GFP (protein).
\begin{equation} \large [mG]_{max} = \frac{\alpha _{5}}{\mu _{5}} \end{equation}
It describes the transcription of GFP when the time is 0 because we supposed at that specific time the transcription will be in the maximum production. Then it is solved the octave equation and is the transcription rate of GFP divided by the degradation rate of GFP.
\begin{equation} \large [G]_{max} = \frac{\alpha _{5} \cdot \alpha _{6}} {\mu _{5} \cdot \mu _{6}} \end{equation}
It describes the translation of GFP when the time is 0 because we supposed at that specific time the translation will be in the maximum production, such as the 13 equation. It is solved and the equation is equal to the transcription of GFP by the translation of Vip is divided by the degradation rate of GFP mRNA by the degradation rate of Vip protein
Parameters and variables
Our gene circuit is made of six different variables: the concentrations of three proteins (cI, VIP and GFP) and their respective mRNA inside a cell. In table 1, the symbols for each variable are shown. Proteins are represented by a single letter and their mRNAs are represented by that same letter with a lowercase "m" before it.
Symbol | Definition | Gene size in bp | Source |
mC, C | Transcription factor cI (mRNA and protein) | 775 | http://partsregistry.org/wiki/index.php?title=Part:BBa_C0051 |
mV, V | Insecticide protein VIP (mRNA and protein) | 2412 | http://www.ncbi.nlm.nih.gov/nuccore/HQ876489 |
mG, G | Reporter protein GFP (mRNA and protein) | 876 | http://parts.igem.org/wiki/index.php?title=Part:BBa_E0240 |
To parameterize our model, we chose to follow the approach of team Beijing 2009; they propose a relationship between the gene length in base pairs and the maximum transcription rate and, similarly, between the protein length in amino acid numbers and the maximum translation rate. Assuming that the number of polymerases and ribosomes are the average values determined for E. coli, the following equations are used:
Symbol | Definition | Values | Formula | Source |
---|---|---|---|---|
α1 | Transcription rate of cI | 5.6 | 4200/Gene Length (nM/min) | https://2009.igem.org/Team:PKU_Beijing/Modeling/Parameters |
α2 | Translation rate of cI | 9.6 | 2400RBS/Protein Length | https://2009.igem.org/Team:PKU_Beijing/Modeling/Parameters |
α3 | Transcription rate of VIP | 1.74129353 | 4200/Gene Length (nM/min) | https://2009.igem.org/Team:PKU_Beijing/Modeling/Parameters |
α4 | Translation rate of VIP | 2.985075 | 2400RBS/Protein Length | https://2009.igem.org/Team:PKU_Beijing/Modeling/Parameters |
α5 | Transcription rate of GFP | 5.53359684 | 4200/Gene Length (nM/min) | https://2009.igem.org/Team:PKU_Beijing/Modeling/Parameters |
α6 | Translation rate of GFP | 9.486166 | 2400RBS/Protein Length | https://2009.igem.org/Team:PKU_Beijing/Modeling/Parameters |
For all the variables the degradation rate is expressed by the formula (ln(2)/half life)+(ln(2)/division time), with the same division time of e. coli (30 min), because all the process occurs within it. The only thing that change is the half time; for cI, VIP and GFP (mRNA) is 6.8 minutes and for cI (Selinger, GW, et al., 2003), VIP and GFP protein is more than 10 hours (Varshavsky, (1997) and Tobias et al., 1991).
Symbol | Definition | Values | Formula | Source |
---|---|---|---|---|
μ1μ3,μ5, | Degradation rate of cI (mRNA | 0.18063836 | Half life = 6.8 min, Division time = 30 min | (Selinger, GW, et al., 2003) |
μ2,μ4,μ6 | Degradation rate of cI (protein) | 0.03885825 | Half life > 10 h; division time = 30 min | (Varshavsky, (1997) and Tobias et al., 1991) |
Simulations
The saturation values for mRNAs and proteins were calculated analytically; but since there are several variables, it becomes complicated to integrate by analytical methods, so we use methods of numerical integration in a computer program by called Simulink. The values of the parameters (rate of transcription, translation, degradation and dissociation) are the ones we have found so far, but we continue researching in order to improve and expand our model.
cI inactive-active simulation
This simulations are showing our model in a temperature below 32ºC the first 200 minutes making the variables of cI protein production in their minimum value for this initial time, creating the possibility of Vip3Ca3 and GFP proteins to be processed in the bacteria at maximum capacity (maximum capacities shown in the parameter table). Past the half hour the temperature is higher of our ideal parameters of cI production (above 32ºC) allowing the transcription and translation of cI protein in a factor of 1 (represented in the equation number 5 showed above) this is the rise in the blue graph at the time 200 minutes, inhibiting the formation of the other two system parts: Vip3Ca3 and GFP proteins, simulated as the decrease of the purple and green graphics. Whose percents in the E.Coli bacterium drops to the minimum until the cI production stops again and the process restarts.
cI active-inactive simulation
The graphics that are shown represent the change of the concentration of each part in relation to time, including all the parameters that we presented and the equation 5, where we represent the repression and activation of the riborswitch making the value of its function 0 or 1. The first graph simulation is showing our model in a temperature between 32 to 37ºC in the first 200 minutes. As you can see, in the graph of cI (c0051), it is active and produced constantly, repressing the Vip3Ca3 and GFP proteins, but when the temperature changes below than the 32 to 37ºC the cI it is now turning off allowing the transcription and translation of Vip3Ca3 and GFP so changes the graphic, but We can appreciate the GFP is producing more than the Vip3Ca3, this because of the bigger base pair size of Vip3Ca3 than GFP that make it longer to be synthesis by the ribosome. This bp length of those proteins are 2412 and 876 respectively.
Probability Equation
\begin{equation} \large p i\left ( T \right )= \frac{e^{a_{i}+b_{i}T}}{1+e^{a_{i}+b_{i}T}} \end{equation}