Team:BV CAPS Kansas/Gallery
From 2013hs.igem.org
(Difference between revisions)
Meaton2222 (Talk | contribs) |
Meaton2222 (Talk | contribs) |
||
(35 intermediate revisions not shown) | |||
Line 711: | Line 711: | ||
position: relative; | position: relative; | ||
width: 208px; | width: 208px; | ||
- | margin-top: | + | margin-top:8px; |
float: right; | float: right; | ||
height: auto; | height: auto; | ||
Line 822: | Line 822: | ||
border: 1px solid #FFFFFF; | border: 1px solid #FFFFFF; | ||
} | } | ||
- | + | <center> | |
#tweets { | #tweets { | ||
Line 908: | Line 908: | ||
</head> | </head> | ||
+ | </center> | ||
<body class="mediawiki ltr ns-0 ns-subject page-Team_UC_Davis"> | <body class="mediawiki ltr ns-0 ns-subject page-Team_UC_Davis"> | ||
Line 935: | Line 936: | ||
<li><a target="new" href="https://2013.igem.org">Main iGEM</a></li> | <li><a target="new" href="https://2013.igem.org">Main iGEM</a></li> | ||
<li><a | <li><a | ||
- | href="https://2013hs.igem.org"> | + | href="https://2013hs.igem.org">HS iGEM</a></li> |
</ul> | </ul> | ||
</li> | </li> | ||
Line 946: | Line 947: | ||
<li class="selected"><a href="https://2013hs.igem.org/Team:BV_CAPS_Kansas/Gallery" | <li class="selected"><a href="https://2013hs.igem.org/Team:BV_CAPS_Kansas/Gallery" | ||
- | title="Fun"><b>Fun</b></a></li> | + | title="Fun"><b>Fun</b></a> |
+ | <ul> | ||
+ | <li ><a title="Facebook">Facebook</a> | ||
+ | <ul> | ||
+ | <li ><a href="https://www.facebook.com/groups/368737559905193/?fref=ts">HS iGEM</a></li> | ||
+ | <li ><a href="https://www.facebook.com/capsigem2013?fref=ts">CAPS iGEM</a></li> | ||
+ | <li ><a href="https://www.facebook.com/groups/igemmers/?fref=ts">iGEM</a></li> | ||
+ | </ul> | ||
+ | </li> | ||
+ | <li ><a title="Twitter">Twitter</a> | ||
+ | <ul> | ||
+ | <li ><a href="https://twitter.com/CAPSiGEM">CAPS iGEM</a></li> | ||
+ | <li ><a href="https://twitter.com/iGEM">iGEM HQ</a></li> | ||
+ | </ul> | ||
+ | </li> | ||
+ | <li ><a title="Slideshows">Slideshows</a> | ||
+ | <ul> | ||
+ | <li ><a href="https://static.igem.org/mediawiki/2013hs/b/bd/CAPS_iGEM_Slideshow_2013.pdf">2013</a></li> | ||
+ | <li ><a href="https://static.igem.org/mediawiki/2013hs/6/66/IGEM_2012_Slideshow.pdf">2012</a></li> | ||
+ | </ul> | ||
+ | </li> | ||
+ | <li ><a href="https://2013hs.igem.org/Team:BV_CAPS_Kansas/Gallery">Glycolysis Poem</a></li> | ||
+ | </ul> | ||
+ | </li> | ||
<li ><a href="https://2013hs.igem.org/Team:BV_CAPS_Kansas/Safety" | <li ><a href="https://2013hs.igem.org/Team:BV_CAPS_Kansas/Safety" | ||
Line 959: | Line 983: | ||
<li ><a href="https://2013hs.igem.org/Team:BV_CAPS_Kansas/Project/Methods">Methods</a></li> | <li ><a href="https://2013hs.igem.org/Team:BV_CAPS_Kansas/Project/Methods">Methods</a></li> | ||
<li ><a href="https://2013hs.igem.org/Team:BV_CAPS_Kansas/Project/Achievements">Achievements</a></li> | <li ><a href="https://2013hs.igem.org/Team:BV_CAPS_Kansas/Project/Achievements">Achievements</a></li> | ||
+ | <li ><a href="https://2013hs.igem.org/Team:BV_CAPS_Kansas/Project/References">References</a></li> | ||
<li ><a href="https://2013hs.igem.org/Team:BV_CAPS_Kansas/Project/Future">Future</a></li> | <li ><a href="https://2013hs.igem.org/Team:BV_CAPS_Kansas/Project/Future">Future</a></li> | ||
</ul> | </ul> | ||
Line 989: | Line 1,014: | ||
<div id="myleftrightbox"> | <div id="myleftrightbox"> | ||
<div id="myleftrightbox" class="fourboxes-1"> | <div id="myleftrightbox" class="fourboxes-1"> | ||
- | <a href="https://2013hs.igem.org/Team:BV_CAPS_Kansas/Problems"><img src="https://static.igem.org/mediawiki/2013hs/f/f5/Problems_Brick.jpg | + | <a href="https://2013hs.igem.org/Team:BV_CAPS_Kansas/Project/Problems"><img src="https://static.igem.org/mediawiki/2013hs/f/f5/Problems_Brick.jpg |
"></a> | "></a> | ||
</div> | </div> | ||
Line 1,009: | Line 1,034: | ||
</div> | </div> | ||
<div id="myleftrightbox" class="fourboxes-4"> | <div id="myleftrightbox" class="fourboxes-4"> | ||
- | <a href="https://2013hs.igem.org/Team:BV_CAPS_Kansas/Methods"><img src="https://static.igem.org/mediawiki/2013hs/d/d6/Methods_Brick.jpg"></a> | + | <a href="https://2013hs.igem.org/Team:BV_CAPS_Kansas/Project/Methods"><img src="https://static.igem.org/mediawiki/2013hs/d/d6/Methods_Brick.jpg"></a> |
</div> | </div> | ||
</div> | </div> | ||
Line 1,034: | Line 1,059: | ||
</div> | </div> | ||
<div id="myleftrightbox" class="fourboxes2-4"> | <div id="myleftrightbox" class="fourboxes2-4"> | ||
- | <a href="https://2013hs.igem.org/ | + | <a href="https://2013hs.igem.org/Jamboree"><img src="https://static.igem.org/mediawiki/2013hs/9/9f/IGEM_Brick_Image.jpg"></a> |
</div> | </div> | ||
</div> | </div> | ||
Line 1,051: | Line 1,076: | ||
<h2>BV CAPS iGEM Tweets</h2> | <h2>BV CAPS iGEM Tweets</h2> | ||
</center> | </center> | ||
+ | <a class="twitter-timeline" href="https://twitter.com/CAPSiGEM" data-widget-id="342763142138454016">Tweets by @CAPSiGEM</a> | ||
+ | <script>!function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0],p=/^http:/.test(d.location)?'http':'https';if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src=p+"://platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs");</script> | ||
<script charset="utf-8" src="http://widgets.twimg.com/j/2/widget.js"></script> | <script charset="utf-8" src="http://widgets.twimg.com/j/2/widget.js"></script> | ||
<script> | <script> | ||
Line 1,088: | Line 1,115: | ||
<div id="sponsorbox" class="sponsorfloat"> | <div id="sponsorbox" class="sponsorfloat"> | ||
<center> | <center> | ||
- | <h2> | + | <h2>Thanks!</h2> |
- | <a href="http://www. | + | <center> |
+ | <a href="http://www.kumc.edu/" target="_blank"><img src="https://static.igem.org/mediawiki/2013hs/2/27/Kumed.jpg" width="200"></a> | ||
</center> | </center> | ||
- | |||
<center> | <center> | ||
- | <a href="https:// | + | <a href="https://www.microryza.com/projects/exploring-molecules-and-microbes" target="_blank"><img src="https://static.igem.org/mediawiki/2013hs/9/97/Microryzalarger.jpg" width="200"></a> |
</center> | </center> | ||
<center> | <center> | ||
- | <a href="https:// | + | <a href="https://2008.igem.org/Team:Hawaii" target="_blank"><img src="https://static.igem.org/mediawiki/2013hs/6/6a/Hawaiilogo.jpg" width="200"></a> |
</center> | </center> | ||
+ | <center> | ||
+ | <a href="https://2012.igem.org/Team:UC_Davis" target="_blank"><img src="https://static.igem.org/mediawiki/2011/4/40/UCD_BME_logo_minimal_copy.png" width="200 height="70"></a> | ||
+ | </center> | ||
+ | <center> | ||
+ | <a href="https://www.neb.com/" target="_blank"><img src="https://static.igem.org/mediawiki/2013hs/c/c4/NewEnglandBiolabs_Logo.jpg" width="200"></a> | ||
</center> | </center> | ||
<center> | <center> | ||
- | <a href="http:// | + | <a href="http://www.idtdna.com/" target="_blank"><img src="https://static.igem.org/mediawiki/2013hs/f/f1/IDTLogo.jpg |
+ | " width="200"></a> | ||
</center> | </center> | ||
<center> | <center> | ||
- | <a | + | <a href="http://www.qiagen.com/" target="_blank"><img src="https://static.igem.org/mediawiki/2013hs/8/88/Quiagen.jpg |
" width="200"></a> | " width="200"></a> | ||
+ | </center> | ||
</center> | </center> | ||
Line 1,119: | Line 1,153: | ||
<div id="myleftbox" class="smallbox"> | <div id="myleftbox" class="smallbox"> | ||
- | <h1> | + | <h1> Fun </h1> |
- | <p> | + | <center><img src="https://static.igem.org/mediawiki/2013hs/6/67/We_Like_Synthetic_Biology.png" width="600"></center><br> |
+ | <p>Who says that science can't be fun?</p> | ||
+ | <br> | ||
+ | <img src="https://static.igem.org/mediawiki/2013hs/0/05/3185999.gif"> | ||
+ | <br><br> | ||
+ | <b>Glycolysis: A Poem</b> | ||
+ | <br> by Alec Adams <br><br> | ||
+ | |||
+ | Glycolysis always just starts with glucose, <br> | ||
+ | In the cytosol, now glucose where do you go? <br> | ||
+ | It could fly away, to the extracellular space, <br> | ||
+ | But it gets phosphorylated by hexokinase, <br> | ||
+ | It costs ATP, to make G-6-P, <br> | ||
+ | But now it's trapped in the cell, and can proceed, <br> | ||
+ | If there's plenty of ATP, and insulin, <br> | ||
+ | Then we've got the conditions to make glycogen, <br> | ||
+ | Product inhibition by HK's alright, <br> | ||
+ | But we need ATP: we isomerize... <br> | ||
+ | To fructose-6-phosphate, are you listening yet? <br> | ||
+ | Cause PFK's the rate limiting step, <br> | ||
+ | Inhibited yes, by allosterically fitting, <br> | ||
+ | And changing the enzyme, it's finicky, this could be... <br> | ||
+ | From PCr, ATP and apparently, <br> | ||
+ | Citrate and H plus also works merrily, <br> | ||
+ | To enhance, the rate take a stance, <br> | ||
+ | With ADP, AMP, Pi and dance, <br> | ||
+ | One last time, ATP is consumed, <br> | ||
+ | To make fructose-1-6-diphosphate, it's all true, <br> | ||
+ | That 6 carbon has to go, all the way, <br> | ||
+ | To 3 carbon backbones, by aldolase, <br> | ||
+ | Making dihydroxyacetone, phosphate, <br> | ||
+ | And to the other 3-C backbone it can go, <br> | ||
+ | And isomerize, <br><br> | ||
+ | To 3-phosphoglyceraldehyde, <br> | ||
+ | With Pi, the enzyme, is a dehydrogenase , <br> | ||
+ | It always makes NADH, and that's all it takes, <br> | ||
+ | But wait, we added a phosphate to the substrate, <br> | ||
+ | 1-3-diphosphoglycerate, <br><br> | ||
+ | |||
+ | We find ways with a kinase for ATP making, <br> | ||
+ | The next enzyme catalyzes substrate phosphorylating, <br> | ||
+ | are we even with ATP? you can believe it, <br> | ||
+ | Make 3-phosphoglycerate and kinase does speed it, <br> | ||
+ | Then we do make 2-phosphoglycerate with a mutase, <br> | ||
+ | Which will enolize to phosphoenopyruvate, <br> | ||
+ | Now for the "pay-off" as it's often called, <br> | ||
+ | We get 2 ATP cause we double it alllllll.... <br> | ||
+ | Of it with pyruvate kinase we control, <br> | ||
+ | The reaction it happens cause PEP makes it go, <br> | ||
+ | But it goes slow with PCr and citrate, <br> | ||
+ | 2 net ATP in the end and that's great! <br><br> | ||
+ | |||
+ | We've gone a long way, and by coming this far, <br> | ||
+ | We make pyruvate and now here we are, <br> | ||
+ | Are aerobic or anaerobic? <br> | ||
+ | We can be both, whichever you pick, <br> | ||
+ | At steady state or low intensity, <br> | ||
+ | We predominantly do OP-ETC, <br> | ||
+ | If we need energy fast we can run, <br> | ||
+ | To LDH, and fermentation, <br> | ||
+ | H+ is bad, but lactate is fuel, <br> | ||
+ | It's used in the liver and muscle tissue, <br> | ||
+ | It's a reduction reaction because, <br> | ||
+ | We oxidize NADH and H+,<br> | ||
+ | To cycle it back, as a cofactor, <br> | ||
+ | For g-3-p-d, H know why it matters, <br> | ||
+ | Hope you could follow it, that's all there is, <br> | ||
+ | To explaining the basics of glycolysis! <br><br> | ||
- | |||
</div> | </div> | ||
Line 1,139: | Line 1,239: | ||
href="https://twitter.com/CAPSiGEM">Tweets</a></li><li><a | href="https://twitter.com/CAPSiGEM">Tweets</a></li><li><a | ||
style="color:#000000" | style="color:#000000" | ||
- | href="https://2013hs.igem.org"> | + | href="https://2013hs.igem.org">HS iGEM</a> </li> |
</ul> </a> </li> | </ul> </a> </li> | ||
Line 1,173: | Line 1,273: | ||
href="https://2013hs.igem.org/Team:BV_CAPS_Kansas/Project/Achievements">Achievements</a></li> | href="https://2013hs.igem.org/Team:BV_CAPS_Kansas/Project/Achievements">Achievements</a></li> | ||
<li><a style="color:#000000" | <li><a style="color:#000000" | ||
+ | href="https://2013hs.igem.org/Team:BV_CAPS_Kansas/Project/References">References</a></li><li><a style="color:#000000" | ||
href="https://2013hs.igem.org/Team:BV_CAPS_Kansas/Project/Future">Future</a> | href="https://2013hs.igem.org/Team:BV_CAPS_Kansas/Project/Future">Future</a> | ||
</li></ul> </li> | </li></ul> </li> | ||
Line 1,208: | Line 1,309: | ||
"><li><a style="color:#000000 " href="https://2013.igem.org/Main_Page | "><li><a style="color:#000000 " href="https://2013.igem.org/Main_Page | ||
">Main iGEM</a> </li><li><a style="color:#000000 " | ">Main iGEM</a> </li><li><a style="color:#000000 " | ||
- | href="https://2013hs.igem.org"> | + | href="https://2013hs.igem.org"> HS iGEM</a> |
</li></ul> | </li></ul> | ||
</div> | </div> |
Latest revision as of 21:12, 21 June 2013
BV CAPS iGEM Tweets
Fun
Who says that science can't be fun?
Glycolysis: A Poem
by Alec Adams
Glycolysis always just starts with glucose,
In the cytosol, now glucose where do you go?
It could fly away, to the extracellular space,
But it gets phosphorylated by hexokinase,
It costs ATP, to make G-6-P,
But now it's trapped in the cell, and can proceed,
If there's plenty of ATP, and insulin,
Then we've got the conditions to make glycogen,
Product inhibition by HK's alright,
But we need ATP: we isomerize...
To fructose-6-phosphate, are you listening yet?
Cause PFK's the rate limiting step,
Inhibited yes, by allosterically fitting,
And changing the enzyme, it's finicky, this could be...
From PCr, ATP and apparently,
Citrate and H plus also works merrily,
To enhance, the rate take a stance,
With ADP, AMP, Pi and dance,
One last time, ATP is consumed,
To make fructose-1-6-diphosphate, it's all true,
That 6 carbon has to go, all the way,
To 3 carbon backbones, by aldolase,
Making dihydroxyacetone, phosphate,
And to the other 3-C backbone it can go,
And isomerize,
To 3-phosphoglyceraldehyde,
With Pi, the enzyme, is a dehydrogenase ,
It always makes NADH, and that's all it takes,
But wait, we added a phosphate to the substrate,
1-3-diphosphoglycerate,
We find ways with a kinase for ATP making,
The next enzyme catalyzes substrate phosphorylating,
are we even with ATP? you can believe it,
Make 3-phosphoglycerate and kinase does speed it,
Then we do make 2-phosphoglycerate with a mutase,
Which will enolize to phosphoenopyruvate,
Now for the "pay-off" as it's often called,
We get 2 ATP cause we double it alllllll....
Of it with pyruvate kinase we control,
The reaction it happens cause PEP makes it go,
But it goes slow with PCr and citrate,
2 net ATP in the end and that's great!
We've gone a long way, and by coming this far,
We make pyruvate and now here we are,
Are aerobic or anaerobic?
We can be both, whichever you pick,
At steady state or low intensity,
We predominantly do OP-ETC,
If we need energy fast we can run,
To LDH, and fermentation,
H+ is bad, but lactate is fuel,
It's used in the liver and muscle tissue,
It's a reduction reaction because,
We oxidize NADH and H+,
To cycle it back, as a cofactor,
For g-3-p-d, H know why it matters,
Hope you could follow it, that's all there is,
To explaining the basics of glycolysis!