Team:BV CAPS Kansas/Project/References
From 2013hs.igem.org
(Difference between revisions)
Meaton2222 (Talk | contribs) |
Meaton2222 (Talk | contribs) |
||
(3 intermediate revisions not shown) | |||
Line 1,162: | Line 1,162: | ||
<div id="myleftbox" class="smallbox"> | <div id="myleftbox" class="smallbox"> | ||
<h1> References</h1> | <h1> References</h1> | ||
- | |||
<h2>General References on Biofuels</h2><ol> | <h2>General References on Biofuels</h2><ol> | ||
<li>Anne Ruffing (2013) <a href="http://cdn.intechopen.com/pdfs/43693/InTech-Metabolic_engineering_of_hydrocarbon_biosynthesis_for_biofuel_production.pdf"> “Metabolic Engineering of Hydrocarbon Biosynthesis for Biofuel Production”. </a> <i>InTech.</i> 263-298. </li> | <li>Anne Ruffing (2013) <a href="http://cdn.intechopen.com/pdfs/43693/InTech-Metabolic_engineering_of_hydrocarbon_biosynthesis_for_biofuel_production.pdf"> “Metabolic Engineering of Hydrocarbon Biosynthesis for Biofuel Production”. </a> <i>InTech.</i> 263-298. </li> | ||
- | |||
- | |||
<li>C. Dellomonaco, F. Fava, and R. Gonzalez (2010) <a href="http://www.microbialcellfactories.com/content/pdf/1475-2859-9-3.pdf">“The path to next generation biofuels: successes and challenges in the era of synthetic biology” </a> <i>Microbial Cell Factories. </i> <b>9(3) </b>. </li> | <li>C. Dellomonaco, F. Fava, and R. Gonzalez (2010) <a href="http://www.microbialcellfactories.com/content/pdf/1475-2859-9-3.pdf">“The path to next generation biofuels: successes and challenges in the era of synthetic biology” </a> <i>Microbial Cell Factories. </i> <b>9(3) </b>. </li> | ||
+ | <li>C. Martin, D.. Nielsen, K.Solomon and K. Jones Prather (2009) <a href=" http://www.cell.com/chemistry-biology/retrieve/pii/S1074552109000350 ">“Synthetic Metabolism: Engineering Biology at the Protein and Pathway Scales”</a> <i>Chemistry & Biology. </i> </i> <b>16(3) </b>, 277-286. </li> | ||
<li>D. Savage, J. Way, and P. Silver (2008) <a href="http://savagelab.org/media/papers/Savage_Silver_ACS_Chem_Biol_2008.pdf">“Defossiling Fuel: How Synthetic Biology Can Transform Biofuel Production”</a> <i>ACS Chemical Biology. </i> <b> 3(1) </b>, 13-16. </li> | <li>D. Savage, J. Way, and P. Silver (2008) <a href="http://savagelab.org/media/papers/Savage_Silver_ACS_Chem_Biol_2008.pdf">“Defossiling Fuel: How Synthetic Biology Can Transform Biofuel Production”</a> <i>ACS Chemical Biology. </i> <b> 3(1) </b>, 13-16. </li> | ||
+ | <li>Jay Keasling on Biofuels - a collection of <a ref= “https://static.igem.org/mediawiki/2013hs/2/24/Jay_Keasling_etc....pdf”>links </a></li> | ||
<li>L. Jarboe, X. Zhang, X. Wang, J.. Moore, K. Shanmugam, and L. Ingram (2010) <a href="http://savagelab.org/media/papers/Savage_Silver_ACS_Chem_Biol_2008.pdf">“Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology” </a> <i>Journal of Biomedicine and Biotechnology. </i> </li> | <li>L. Jarboe, X. Zhang, X. Wang, J.. Moore, K. Shanmugam, and L. Ingram (2010) <a href="http://savagelab.org/media/papers/Savage_Silver_ACS_Chem_Biol_2008.pdf">“Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology” </a> <i>Journal of Biomedicine and Biotechnology. </i> </li> | ||
- | |||
- | |||
<li>Michael Brenner et. al. (2006) <a href="http://www.fas.org/irp/agency/dod/jason/micro.pdf">“Engineering Microorganisms for Energy Production”</a> <i>Office of Biological and Environmental Research of the Department of Energy. </i> </li> | <li>Michael Brenner et. al. (2006) <a href="http://www.fas.org/irp/agency/dod/jason/micro.pdf">“Engineering Microorganisms for Energy Production”</a> <i>Office of Biological and Environmental Research of the Department of Energy. </i> </li> | ||
- | <li>Jay Keasling | + | <li>Pamela Peralta-Yahya1 and Jay Keasling (2010) <a href="http://onlinelibrary.wiley.com/doi/10.1002/biot.200900220/pdf">“Advanced biofuel production in microbes” </a>. <i>Biotechnology Journal. </i> <b>5(2) </b>, 147-162. </li> |
+ | <li>R. Radakovits, R. Jinkerson, A. Darzins, and M.. Posewitz (2010) <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2863401/pdf/zek486.pdf">“Genetic Engineering of Algae for Enhanced Biofuel Production”</a> <i>American Society for Microbiology. </i> <b>9(4) </b>, 486-501. </li> | ||
+ | <li>S. Lee, H. Chou, T. Ham, T. Lee and J. Keasling (2008) <a href="http://download.bioon.com.cn/upload/month_0906/20090602_9baf7ed8bf3db7b1eb2eXd9VaYDZvzAN.attach.pdf">“Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels” </a> <i>Science Direct. </i> <b>19</b>, 556-563. </li></ol> | ||
- | <h2>Cyanobacteria and Pyruvate Kinase References</h2><ol> | + | <br><br><h2>Cyanobacteria and Pyruvate Kinase References</h2><ol> |
- | <li> | + | |
+ | <li>A. Schramm, B. Siebers, B. Tjaden, H. Brinkmann, and R. Hensel (2000) <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC101911/pdf/jb002001.pdf">“Pyruvate Kinase of the Hyperthermophilic Crenarchaeote Thermoproteus tenax: Physiological Role and Phylogenetic Aspects” </a> <i>Journal of Bacteriology. </i> <b>182(7) </b>, 2001–2009. </li> | ||
+ | <li>Ana Ramos et al. (2004) <a href="http://mic.sgmjournals.org/content/150/4/1103.full.pdf">“Effect of pyruvate kinase overproduction on glucose metabolism of Lactococcus lactis” </a> <i>Microbiology. </i><b> 150</b>, 1103–1111. </li> | ||
+ | <li>Aron Fenton and Aileen Alontaga (2009) <a ref= “http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3105363/”>“The Impact of Ions on Allosteric Functions in Human Liver Pyruvate Kinase”.</a> <i>Methods in Enzymology.</i> <b>466,</b> 83-107.</li> | ||
+ | <li>D. Gong, Z. Gong, Y. Guo, and J. Zhu (2002) <a href="http://www.plantphysiology.org/content/129/1/225.full.pdf">“Expression, Activation, and Biochemical Properties of a Novel Arabidopsis Protein Kinase”</a> <i>Plant Physiology. </i> <b> 129</b>, 225–234. </li> | ||
<li>H. Huang, D. Camsund, P. Lindblad and T. Heidorn (2010) <a href="http://nar.oxfordjournals.org/content/38/8/2577.full.pdf">“Design and characterization of molecular tools for a Synthetic Biology approach towards developing cyanobacterial biotechnology” </a> <i>Nucleic Acids Research. </i> <b>38(8) </b>, 2577–2593. </li> | <li>H. Huang, D. Camsund, P. Lindblad and T. Heidorn (2010) <a href="http://nar.oxfordjournals.org/content/38/8/2577.full.pdf">“Design and characterization of molecular tools for a Synthetic Biology approach towards developing cyanobacterial biotechnology” </a> <i>Nucleic Acids Research. </i> <b>38(8) </b>, 2577–2593. </li> | ||
<li>H. Knoop, Y. Zilliges, W. Lockau, and R. Steuer (2010) <a href="http://www.plantphysiol.org/content/154/1/410.full.pdf">“The Metabolic Network of Synechocystis sp. PCC 6803: Systemic Properties of Autotrophic Growth” </a> <i>Plant Physiology. </i> 154, 410–422. </li> | <li>H. Knoop, Y. Zilliges, W. Lockau, and R. Steuer (2010) <a href="http://www.plantphysiol.org/content/154/1/410.full.pdf">“The Metabolic Network of Synechocystis sp. PCC 6803: Systemic Properties of Autotrophic Growth” </a> <i>Plant Physiology. </i> 154, 410–422. </li> | ||
+ | <li>Hsin-Ho Huang and Peter Lindblad (2013) <a href="http://www.jbioleng.org/content/pdf/1754-1611-7-10.pdf">“Wide-dynamic-range promoters engineered for cyanobacteria” </a> <i>Journal of Biological Engineering. </i> <b> 7(10) </b>. </li> | ||
+ | <li>Jiro Hattori et al. (1995) <a href="http://www.sciencedirect.com/science/article/pii/0305197895000615">“Pyruvate kinase isozymes: Ancient diversity retained in modern plant cells”</a> <i>Biochemical Systematics and Ecology. </i> <b>23(7–8) </b>, 773–777, 779–780. </li> | ||
+ | <li>M. Malcovati and G. Valentini (1982) <a ref= “http://cmbe.engr.uga.edu/assays/pyruvatekinase.pdf”> “AMP- and Fructose 1,6,-Biphosphate-activated pyruvate kinases from Escherichia coli”.</a><i> Methods in Enzymology</i>. <b>90</b>, 170-179.</li> | ||
+ | <li>Open Wetware Synthetic Biology Course Website with information on Algal Biofuels <a href=" http://openwetware.org/wiki/CH391L/S13/Algal_Biofuels ">http://openwetware.org/wiki/CH391L/S13/Algal_Biofuels</a> </li> | ||
<li>S. Nagarajan, D. Sherman, I. Shaw, and L. Shermana(2012) <a href="http://jb.asm.org/content/194/2/448.full.pdf">“Functions of the Duplicated hik31 Operons in Central Metabolism and Responses to Light, Dark, and Carbon Sources in Synechocystis sp. Strain PCC 6803”</a> <i>J. Bacteriol. </i> <b>194(2) </b>, 448. </li> | <li>S. Nagarajan, D. Sherman, I. Shaw, and L. Shermana(2012) <a href="http://jb.asm.org/content/194/2/448.full.pdf">“Functions of the Duplicated hik31 Operons in Central Metabolism and Responses to Light, Dark, and Carbon Sources in Synechocystis sp. Strain PCC 6803”</a> <i>J. Bacteriol. </i> <b>194(2) </b>, 448. </li> | ||
- | |||
- | |||
<li>T. Dandekar, S. Schuster, B. Snel, M. Huynen and P. Bork (1999) <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1220531/pdf/10493919.pdf">“Pathway alignment: application to the comparative analysis of glycolytic enzymes”</a> <i>Biochem. J. </i> <b>343</b>, 115-124. </li> | <li>T. Dandekar, S. Schuster, B. Snel, M. Huynen and P. Bork (1999) <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1220531/pdf/10493919.pdf">“Pathway alignment: application to the comparative analysis of glycolytic enzymes”</a> <i>Biochem. J. </i> <b>343</b>, 115-124. </li> | ||
<li>Takakazu Kaneko et al. (1996) <a href="http://dnaresearch.oxfordjournals.org/content/3/3/109.full.pdf">“Sequence Analysis of the Genome of the Unicellular Cyanobacterium Synechocystis sp. Strain PCC6803. II. Sequence Determination of the Entire Genome and Assignment of Potential Protein-coding Regions” </a> <i>DNA Research.</i> 3, 109-136. </li> | <li>Takakazu Kaneko et al. (1996) <a href="http://dnaresearch.oxfordjournals.org/content/3/3/109.full.pdf">“Sequence Analysis of the Genome of the Unicellular Cyanobacterium Synechocystis sp. Strain PCC6803. II. Sequence Determination of the Entire Genome and Assignment of Potential Protein-coding Regions” </a> <i>DNA Research.</i> 3, 109-136. </li> | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
<li>Thomas P. Howard et al. (2013) <a href="http://www.pnas.org/content/110/19/7636.full.pdf">“Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli” </a> <i>PNAS. </i><b> 110 (19), </b> 7636–7641. </li> | <li>Thomas P. Howard et al. (2013) <a href="http://www.pnas.org/content/110/19/7636.full.pdf">“Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli” </a> <i>PNAS. </i><b> 110 (19), </b> 7636–7641. </li> | ||
- | <li> | + | <li>V. Knowles, C.Smith, C. Smith, and W. Plaxton (2001) <a href="http://www.jbc.org/content/276/24/20966.full.pdf">“Structural and Regulatory Properties of Pyruvate Kinase from the Cyanobacterium Synechococcus PCC 6301”</a> <i>J. Biol. Chem. </i><b> 276,</b> 20966-20972. </li> |
+ | <li>Vicki L. Knowles and William C. Plaxton (2003) <a href="http://pcp.oxfordjournals.org/content/44/7/758.full.pdf">“From Genome to Enzyme: Analysis of Key Glycolytic and Oxidative Pentose Phosphate Pathway Enzymes in the Cyanobacterium Synechocystis sp. PCC 6803”</a> <i>Plant Cell Physiol. </i><b> 44(7) </b>, 758–763. </li> | ||
+ | <li>Wolfgang H. Nitschmann and Gunter A. Peschek (1986) <a href="http://jb.asm.org/content/168/3/1205.full.pdf">“Oxidative Phosphorylation and Energy Buffering in Cyanobacteria”</a> <i> J. Bacteriol. </i> <b>168(3), </b> 1205. </li> | ||
+ | <li> X. Liu, S. Fallon, J. Sheng, and R. Curtiss III ( 2011) <a href="https://static.igem.org/mediawiki/2013hs/0/03/CO2-Limitation-Inducible_Green_Recovery_of_Fatty_Acids_from_Cyanobacteria_Biomass.pdf">“CO2-limitation-inducible Green Recovery of fatty acids from cyanobacterial biomass”</a> <i>PNAS. </i><b> 108(17) </b>, 6905–6908. </li> | ||
+ | <li>Y. Guo et al. (2012) <a ref= “http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3348618/”>“Beta-Cell Injury in Ncb5or-null Mice is Exacerbated by Consumption of a High-Fat Diet”.</a> <i>Eur J Lipid Sci Technol</i>. <b>114(3)</b>, 233-243.</li></ol> | ||
- | <h2>Synthetic Biology</h2><ol> | + | |
+ | <br><br><h2>Synthetic Biology</h2><ol> | ||
+ | <li>Caltech Synthetic Biology Journal Club <a href=" http://openwetware.org/wiki/Caltech_Synthetic_Biology_Journal_Club ">http://openwetware.org/wiki/Caltech_Synthetic_Biology_Journal_Club</a></li> | ||
<li> R.Shetty, D. Endy and T. Knight Jr (2008) <a href="http://www.jbioleng.org/content/pdf/1754-1611-2-5.pdf">“Engineering BioBrick vectors from BioBrick parts” </a> <i>Journal of Biological Engineering. </i><b> 2(5). </b> </li> | <li> R.Shetty, D. Endy and T. Knight Jr (2008) <a href="http://www.jbioleng.org/content/pdf/1754-1611-2-5.pdf">“Engineering BioBrick vectors from BioBrick parts” </a> <i>Journal of Biological Engineering. </i><b> 2(5). </b> </li> | ||
- | <li>Tom Knight (1996) <a href="http://dspace.mit.edu/bitstream/handle/1721.1/21168/biobricks.pdf?sequence=1">“Idempotent Vector Design for Standard Assembly of Biobricks” </a> <i>PNAS. </i> <b>93(20), </b> 10891-6. | + | <li>Tom Knight (1996) <a href="http://dspace.mit.edu/bitstream/handle/1721.1/21168/biobricks.pdf?sequence=1">“Idempotent Vector Design for Standard Assembly of Biobricks” </a> <i>PNAS. </i> <b>93(20), </b> 10891-6. </li></ol> |
- | + | ||
- | <h2>Diagrams | + | <br><br><h2>Diagrams</h2><ol> |
<li>Pathway Diagram01 <a href=" https://static.igem.org/mediawiki/2013hs/8/8c/Pathway_Diagram.PDF "> https://static.igem.org/mediawiki/2013hs/8/8c/Pathway_Diagram.PDF </a></li> | <li>Pathway Diagram01 <a href=" https://static.igem.org/mediawiki/2013hs/8/8c/Pathway_Diagram.PDF "> https://static.igem.org/mediawiki/2013hs/8/8c/Pathway_Diagram.PDF </a></li> | ||
- | <li>Pathway Diagram02 <a href=" https://static.igem.org/mediawiki/2013hs/4/46/CyanoFuels_Fig.1. | + | <li>Pathway Diagram02 <a href=" https://static.igem.org/mediawiki/2013hs/4/46/CyanoFuels_Fig.1.png”> https://static.igem.org/mediawiki/2013hs/4/46/CyanoFuels_Fig.1.png </a></li> |
- | <li>Pathway Diagram03 <a href=" https://static.igem.org/mediawiki/2013hs/c/cc/Image3. | + | <li>Pathway Diagram03 <a href=" https://static.igem.org/mediawiki/2013hs/c/cc/Image3.png”> https://static.igem.org/mediawiki/2013hs/c/cc/Image3.png </a></li> |
- | <li>Jansson, Christer. "Figure 1." Earth Science Division. Lawrence Berkeley National Laboratory. | + | <li>Jansson, Christer. "Figure 1." Earth Science Division. Lawrence Berkeley National Laboratory. <a href=" http://esd.lbl.gov/about/staff/christerjansson/cyanofuels.html ">Web.</a> 22 May 2013.</li> |
- | <li>Ruffing, Anne M. "Figure 3." Intech. InTech, 20 Mar. 2013.<a href=" http://www.intechopen.com/books/liquid-gaseous-and-solid-biofuels-conversion-techniques/metabolic-engineering-of-hydrocarbon-biosynthesis-for-biofuel-production ">Web.</a>22 May 2013. </li> | + | <li>Ruffing, Anne M. "Figure 3." Intech. InTech, 20 Mar. 2013. <a href=" http://www.intechopen.com/books/liquid-gaseous-and-solid-biofuels-conversion-techniques/metabolic-engineering-of-hydrocarbon-biosynthesis-for-biofuel-production "> Web.</a> 22 May 2013. </li></ol> |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
</div> | </div> |
Latest revision as of 21:47, 21 June 2013
BV CAPS iGEM Tweets
References
General References on Biofuels
- Anne Ruffing (2013) “Metabolic Engineering of Hydrocarbon Biosynthesis for Biofuel Production”. InTech. 263-298.
- C. Dellomonaco, F. Fava, and R. Gonzalez (2010) “The path to next generation biofuels: successes and challenges in the era of synthetic biology” Microbial Cell Factories. 9(3) .
- C. Martin, D.. Nielsen, K.Solomon and K. Jones Prather (2009) “Synthetic Metabolism: Engineering Biology at the Protein and Pathway Scales” Chemistry & Biology. 16(3) , 277-286.
- D. Savage, J. Way, and P. Silver (2008) “Defossiling Fuel: How Synthetic Biology Can Transform Biofuel Production” ACS Chemical Biology. 3(1) , 13-16.
- Jay Keasling on Biofuels - a collection of links
- L. Jarboe, X. Zhang, X. Wang, J.. Moore, K. Shanmugam, and L. Ingram (2010) “Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology” Journal of Biomedicine and Biotechnology.
- Michael Brenner et. al. (2006) “Engineering Microorganisms for Energy Production” Office of Biological and Environmental Research of the Department of Energy.
- Pamela Peralta-Yahya1 and Jay Keasling (2010) “Advanced biofuel production in microbes” . Biotechnology Journal. 5(2) , 147-162.
- R. Radakovits, R. Jinkerson, A. Darzins, and M.. Posewitz (2010) “Genetic Engineering of Algae for Enhanced Biofuel Production” American Society for Microbiology. 9(4) , 486-501.
- S. Lee, H. Chou, T. Ham, T. Lee and J. Keasling (2008) “Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels” Science Direct. 19, 556-563.
Cyanobacteria and Pyruvate Kinase References
- A. Schramm, B. Siebers, B. Tjaden, H. Brinkmann, and R. Hensel (2000) “Pyruvate Kinase of the Hyperthermophilic Crenarchaeote Thermoproteus tenax: Physiological Role and Phylogenetic Aspects” Journal of Bacteriology. 182(7) , 2001–2009.
- Ana Ramos et al. (2004) “Effect of pyruvate kinase overproduction on glucose metabolism of Lactococcus lactis” Microbiology. 150, 1103–1111.
- Aron Fenton and Aileen Alontaga (2009) “The Impact of Ions on Allosteric Functions in Human Liver Pyruvate Kinase”. Methods in Enzymology. 466, 83-107.
- D. Gong, Z. Gong, Y. Guo, and J. Zhu (2002) “Expression, Activation, and Biochemical Properties of a Novel Arabidopsis Protein Kinase” Plant Physiology. 129, 225–234.
- H. Huang, D. Camsund, P. Lindblad and T. Heidorn (2010) “Design and characterization of molecular tools for a Synthetic Biology approach towards developing cyanobacterial biotechnology” Nucleic Acids Research. 38(8) , 2577–2593.
- H. Knoop, Y. Zilliges, W. Lockau, and R. Steuer (2010) “The Metabolic Network of Synechocystis sp. PCC 6803: Systemic Properties of Autotrophic Growth” Plant Physiology. 154, 410–422.
- Hsin-Ho Huang and Peter Lindblad (2013) “Wide-dynamic-range promoters engineered for cyanobacteria” Journal of Biological Engineering. 7(10) .
- Jiro Hattori et al. (1995) “Pyruvate kinase isozymes: Ancient diversity retained in modern plant cells” Biochemical Systematics and Ecology. 23(7–8) , 773–777, 779–780.
- M. Malcovati and G. Valentini (1982) “AMP- and Fructose 1,6,-Biphosphate-activated pyruvate kinases from Escherichia coli”. Methods in Enzymology. 90, 170-179.
- Open Wetware Synthetic Biology Course Website with information on Algal Biofuels http://openwetware.org/wiki/CH391L/S13/Algal_Biofuels
- S. Nagarajan, D. Sherman, I. Shaw, and L. Shermana(2012) “Functions of the Duplicated hik31 Operons in Central Metabolism and Responses to Light, Dark, and Carbon Sources in Synechocystis sp. Strain PCC 6803” J. Bacteriol. 194(2) , 448.
- T. Dandekar, S. Schuster, B. Snel, M. Huynen and P. Bork (1999) “Pathway alignment: application to the comparative analysis of glycolytic enzymes” Biochem. J. 343, 115-124.
- Takakazu Kaneko et al. (1996) “Sequence Analysis of the Genome of the Unicellular Cyanobacterium Synechocystis sp. Strain PCC6803. II. Sequence Determination of the Entire Genome and Assignment of Potential Protein-coding Regions” DNA Research. 3, 109-136.
- Thomas P. Howard et al. (2013) “Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli” PNAS. 110 (19), 7636–7641.
- V. Knowles, C.Smith, C. Smith, and W. Plaxton (2001) “Structural and Regulatory Properties of Pyruvate Kinase from the Cyanobacterium Synechococcus PCC 6301” J. Biol. Chem. 276, 20966-20972.
- Vicki L. Knowles and William C. Plaxton (2003) “From Genome to Enzyme: Analysis of Key Glycolytic and Oxidative Pentose Phosphate Pathway Enzymes in the Cyanobacterium Synechocystis sp. PCC 6803” Plant Cell Physiol. 44(7) , 758–763.
- Wolfgang H. Nitschmann and Gunter A. Peschek (1986) “Oxidative Phosphorylation and Energy Buffering in Cyanobacteria” J. Bacteriol. 168(3), 1205.
- X. Liu, S. Fallon, J. Sheng, and R. Curtiss III ( 2011) “CO2-limitation-inducible Green Recovery of fatty acids from cyanobacterial biomass” PNAS. 108(17) , 6905–6908.
- Y. Guo et al. (2012) “Beta-Cell Injury in Ncb5or-null Mice is Exacerbated by Consumption of a High-Fat Diet”. Eur J Lipid Sci Technol. 114(3), 233-243.
Synthetic Biology
- Caltech Synthetic Biology Journal Club http://openwetware.org/wiki/Caltech_Synthetic_Biology_Journal_Club
- R.Shetty, D. Endy and T. Knight Jr (2008) “Engineering BioBrick vectors from BioBrick parts” Journal of Biological Engineering. 2(5).
- Tom Knight (1996) “Idempotent Vector Design for Standard Assembly of Biobricks” PNAS. 93(20), 10891-6.
Diagrams
- Pathway Diagram01 https://static.igem.org/mediawiki/2013hs/8/8c/Pathway_Diagram.PDF
- Pathway Diagram02 https://static.igem.org/mediawiki/2013hs/c/cc/Image3.png
- Jansson, Christer. "Figure 1." Earth Science Division. Lawrence Berkeley National Laboratory. Web. 22 May 2013.
- Ruffing, Anne M. "Figure 3." Intech. InTech, 20 Mar. 2013. Web. 22 May 2013.