Team:NC School of Sci Math
From 2013hs.igem.org
Jack Allen (Talk | contribs) (→Notebook) |
Jack Allen (Talk | contribs) (→Notebook) |
||
Line 66: | Line 66: | ||
As a foray into our project, we first took some preliminary data using our modified Google ADK and pGLO E. coli expressing Green Fluorescent Protein. We found that we were able to detect a distinct change in color. Some baseline color was present from the UV Light source used for the experiment. The graphs below clearly show that our system is able to detect E. coli expressing GFP. | As a foray into our project, we first took some preliminary data using our modified Google ADK and pGLO E. coli expressing Green Fluorescent Protein. We found that we were able to detect a distinct change in color. Some baseline color was present from the UV Light source used for the experiment. The graphs below clearly show that our system is able to detect E. coli expressing GFP. | ||
- | [[File:pGLO.jpg]] [[File:pGLO-light.jpg]] | + | [[File:pGLO.jpg|200px|thumb|left|alt text]] |
+ | [[File:pGLO-light.jpg|200px|thumb|left|alt text]] | ||
===Results/Conclusions=== | ===Results/Conclusions=== |
Revision as of 18:55, 1 June 2013
- a team description
- project description
- safety information (did your team take a safety training course? were you supervised in the lab?)
- team attribution (who did what part of your project?)
- lab notebook
- sponsor information
- other information
Example: 2013hs.igem.org/Team:NC_School_of_Sci_Math/Our_Pets
You can write a background of your team here. Give us a background of your team, the members, etc. Or tell us more about something of your choosing. | |
Tell us more about your project. Give us background. Use this as the abstract of your project. Be descriptive but concise (1-2 paragraphs) | |
Team NC_School_of_Sci_Math |
Official Team Profile |
---|
Contents |
Team
Tell us about your team, your school!
Project
Biosensors provide a wide variety of applications, particularly analyte detection in the environment. Positive results in biosensors lead to the output of a reporter, commonly in the form of fluorescent proteins. Here we construct a biosensor that is capable of indicating the presence of various pollutants in water through expression of several different fluorescent proteins. We selected lead, copper, phosphate, and nitrate/nitrite promoters and paired them with specific reporter coding sequences. Presence of these ions drives the transcription of specific fluorescent proteins. Detection of these proteins is enabled through a light detection apparatus and the information can be sent to mobile devices in a user-friendly interface via a modified Google ADK. This novel multibiosensor can be implemented to detect pollutants in sewer systems, septic tanks, and other sources of water, and provide and early-detection warning system, preventing the pollutants from causing serious harm to equipment, animals, or people.
The goal of this project, therefore, was to develop a multi-input logic gate in Escherichia Coli, which can detect the presence of a number of environmentally degrading compounds, and for each, produce a unique colorimetric output. We applied some principles of electrical engineering by using a Google ADK to sense this colorimetric output and send an alert. We envision that for an end-user, our elegant synthetic biology solution will allow a homeowner to easily and effectively be notified of the need for inspection of their septic system. The product has applications in water quality tests, sewage treatments plants, and in industry where the presence of pollutants could be harmful to equipment, workers, or consumers.
Notebook
To begin our experiment, we needed to create a device that could detect color. We chose to use the Google ADK, an open ended platform that allows users to take control of many sensors that come attached to an Arduino board, including a colorimeter. However, a standard ADK is set up to match any color presented to it, using LED lights. In some of our preliminary tests, the reflection of the light from these LEDs skewed data. Therefore, we modified the code of the ADK, using Google's software developer package, so that it does not turn on its LED lights but instead outputs colorimeter data to a computer. An example of this output is shown below.
As a foray into our project, we first took some preliminary data using our modified Google ADK and pGLO E. coli expressing Green Fluorescent Protein. We found that we were able to detect a distinct change in color. Some baseline color was present from the UV Light source used for the experiment. The graphs below clearly show that our system is able to detect E. coli expressing GFP.
Results/Conclusions
What did you achieve over the course of your semester?
Safety
What safety precautions did your team take? Did you take a safety training course? Were you supervised at all times in the lab?
Attributions
Who worked on what?
Human Practices
What impact does/will your project have on the public?
Fun!
What was your favorite team snack?? Have a picture of your team mascot?
<forum_subtle />