Team:BV CAPS Kansas/Project/References
From 2013hs.igem.org
Revision as of 21:47, 21 June 2013 by Meaton2222 (Talk | contribs)
BV CAPS iGEM Tweets
References
General References on Biofuels
- Anne Ruffing (2013) “Metabolic Engineering of Hydrocarbon Biosynthesis for Biofuel Production”. InTech. 263-298.
- C. Dellomonaco, F. Fava, and R. Gonzalez (2010) “The path to next generation biofuels: successes and challenges in the era of synthetic biology” Microbial Cell Factories. 9(3) .
- C. Martin, D.. Nielsen, K.Solomon and K. Jones Prather (2009) “Synthetic Metabolism: Engineering Biology at the Protein and Pathway Scales” Chemistry & Biology. 16(3) , 277-286.
- D. Savage, J. Way, and P. Silver (2008) “Defossiling Fuel: How Synthetic Biology Can Transform Biofuel Production” ACS Chemical Biology. 3(1) , 13-16.
- Jay Keasling on Biofuels - a collection of links
- L. Jarboe, X. Zhang, X. Wang, J.. Moore, K. Shanmugam, and L. Ingram (2010) “Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology” Journal of Biomedicine and Biotechnology.
- Michael Brenner et. al. (2006) “Engineering Microorganisms for Energy Production” Office of Biological and Environmental Research of the Department of Energy.
- Pamela Peralta-Yahya1 and Jay Keasling (2010) “Advanced biofuel production in microbes” . Biotechnology Journal. 5(2) , 147-162.
- R. Radakovits, R. Jinkerson, A. Darzins, and M.. Posewitz (2010) “Genetic Engineering of Algae for Enhanced Biofuel Production” American Society for Microbiology. 9(4) , 486-501.
- S. Lee, H. Chou, T. Ham, T. Lee and J. Keasling (2008) “Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels” Science Direct. 19, 556-563.
Cyanobacteria and Pyruvate Kinase References
- A. Schramm, B. Siebers, B. Tjaden, H. Brinkmann, and R. Hensel (2000) “Pyruvate Kinase of the Hyperthermophilic Crenarchaeote Thermoproteus tenax: Physiological Role and Phylogenetic Aspects” Journal of Bacteriology. 182(7) , 2001–2009.
- Ana Ramos et al. (2004) “Effect of pyruvate kinase overproduction on glucose metabolism of Lactococcus lactis” Microbiology. 150, 1103–1111.
- Aron Fenton and Aileen Alontaga (2009) “The Impact of Ions on Allosteric Functions in Human Liver Pyruvate Kinase”. Methods in Enzymology. 466, 83-107.
- D. Gong, Z. Gong, Y. Guo, and J. Zhu (2002) “Expression, Activation, and Biochemical Properties of a Novel Arabidopsis Protein Kinase” Plant Physiology. 129, 225–234.
- H. Huang, D. Camsund, P. Lindblad and T. Heidorn (2010) “Design and characterization of molecular tools for a Synthetic Biology approach towards developing cyanobacterial biotechnology” Nucleic Acids Research. 38(8) , 2577–2593.
- H. Knoop, Y. Zilliges, W. Lockau, and R. Steuer (2010) “The Metabolic Network of Synechocystis sp. PCC 6803: Systemic Properties of Autotrophic Growth” Plant Physiology. 154, 410–422.
- Hsin-Ho Huang and Peter Lindblad (2013) “Wide-dynamic-range promoters engineered for cyanobacteria” Journal of Biological Engineering. 7(10) .
- Jiro Hattori et al. (1995) “Pyruvate kinase isozymes: Ancient diversity retained in modern plant cells” Biochemical Systematics and Ecology. 23(7–8) , 773–777, 779–780.
- M. Malcovati and G. Valentini (1982) “AMP- and Fructose 1,6,-Biphosphate-activated pyruvate kinases from Escherichia coli”. Methods in Enzymology. 90, 170-179.
- Open Wetware Synthetic Biology Course Website with information on Algal Biofuels http://openwetware.org/wiki/CH391L/S13/Algal_Biofuels
- S. Nagarajan, D. Sherman, I. Shaw, and L. Shermana(2012) “Functions of the Duplicated hik31 Operons in Central Metabolism and Responses to Light, Dark, and Carbon Sources in Synechocystis sp. Strain PCC 6803” J. Bacteriol. 194(2) , 448.
- T. Dandekar, S. Schuster, B. Snel, M. Huynen and P. Bork (1999) “Pathway alignment: application to the comparative analysis of glycolytic enzymes” Biochem. J. 343, 115-124.
- Takakazu Kaneko et al. (1996) “Sequence Analysis of the Genome of the Unicellular Cyanobacterium Synechocystis sp. Strain PCC6803. II. Sequence Determination of the Entire Genome and Assignment of Potential Protein-coding Regions” DNA Research. 3, 109-136.
- Thomas P. Howard et al. (2013) “Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli” PNAS. 110 (19), 7636–7641.
- V. Knowles, C.Smith, C. Smith, and W. Plaxton (2001) “Structural and Regulatory Properties of Pyruvate Kinase from the Cyanobacterium Synechococcus PCC 6301” J. Biol. Chem. 276, 20966-20972.
- Vicki L. Knowles and William C. Plaxton (2003) “From Genome to Enzyme: Analysis of Key Glycolytic and Oxidative Pentose Phosphate Pathway Enzymes in the Cyanobacterium Synechocystis sp. PCC 6803” Plant Cell Physiol. 44(7) , 758–763.
- Wolfgang H. Nitschmann and Gunter A. Peschek (1986) “Oxidative Phosphorylation and Energy Buffering in Cyanobacteria” J. Bacteriol. 168(3), 1205.
- X. Liu, S. Fallon, J. Sheng, and R. Curtiss III ( 2011) “CO2-limitation-inducible Green Recovery of fatty acids from cyanobacterial biomass” PNAS. 108(17) , 6905–6908.
- Y. Guo et al. (2012) “Beta-Cell Injury in Ncb5or-null Mice is Exacerbated by Consumption of a High-Fat Diet”. Eur J Lipid Sci Technol. 114(3), 233-243.
Synthetic Biology
- Caltech Synthetic Biology Journal Club http://openwetware.org/wiki/Caltech_Synthetic_Biology_Journal_Club
- R.Shetty, D. Endy and T. Knight Jr (2008) “Engineering BioBrick vectors from BioBrick parts” Journal of Biological Engineering. 2(5).
- Tom Knight (1996) “Idempotent Vector Design for Standard Assembly of Biobricks” PNAS. 93(20), 10891-6.
Diagrams
- Pathway Diagram01 https://static.igem.org/mediawiki/2013hs/8/8c/Pathway_Diagram.PDF
- Pathway Diagram02 https://static.igem.org/mediawiki/2013hs/c/cc/Image3.png
- Jansson, Christer. "Figure 1." Earth Science Division. Lawrence Berkeley National Laboratory. Web. 22 May 2013.
- Ruffing, Anne M. "Figure 3." Intech. InTech, 20 Mar. 2013. Web. 22 May 2013.